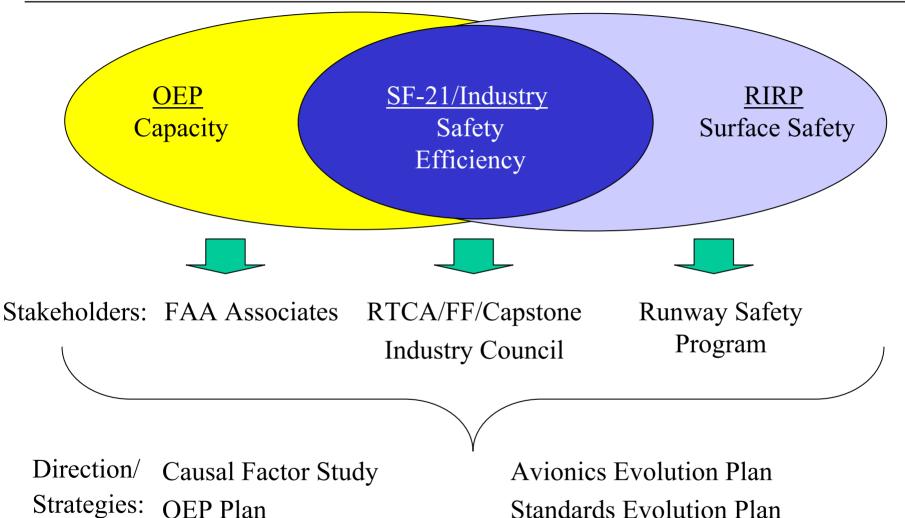


CNS Panel Discussion

Safe Flight 21 and Surface Technology Roadmap


May 2001

AND-500 Portfolios

Capstone Program Plan

SF-21 Master Plan

2

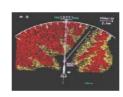
Surface Technology Roadmap

Safe Flight 21 Program Overview

- Objective:
 - Expedite emerging technology
 - Government and industry cooperation
 - Demonstrate 9 enhancements that will facilitate free flight capability

Air-to-Air

- Improved Separation Standards
- Improved Low-Visibility Approaches
- Enhanced See and Avoid


• Enhanced Operations for En Route Air-to-Air, Investigating Delegation of Separation

Authority

Ground-to-Ground

Air-to-Ground

• Affordable Reduction of Controlled Flight into Terrain (CFIT)

• Surveillance Coverage in Non-Radar Airspace

Ground-to-Air

• Weather and Other Data to the Cockpit

Safe Flight 21Program

Safe Flight 21

- Surface technology demonstrations in Ohio River Valley
 - Test beds established in Memphis and Louisville
 - Improved surface surveillance and navigation for the pilot/controller
 - » Multilateration and data fusion
 - » ADS-B and TIS-B
 - » Surface moving map
- Alaska Capstone:
 - Bethel:
 - » Objective: Provide ADS-B radar-like services in remote Yukon-Kuskokwim Delta area (where no radar coverage exists) to reduce accidents (Initial operating capability January 1, 2001)
 - Capabilities:
 - » Automatic Dependent Surveillance-Broadcast (ADS-B) (for non-radar coverage areas)
 - » Flight Information Services (FIS)
 - » Controlled Flight Into Terrain (CFIT)

Refocus Application Approach

- Safe Flight 21 "checklist" team currently focused on development of 4 specific checklist
 - 6.1.1 FAROA
 - 3.2.1 Approach spacing
 - 3.4 Departure spacing
 - 6.2 Surface situational Awareness
- Reality is that we can not afford to do applications in "serial" fashion
- Must think of applications from a more "holistic" end-toend approach
 - Refocusing accomplishes this approach

Surface Applications

OEP

- AD-6 Surface Movement Coordination
- AD-7 Arrival /
 Departure
 Throughput:Airport
 Surface Movement

Common Threads

- Shared Situational Awareness for all participants
 - > ATC Tower
 - > Airline AOC
 - Cockpit
 - > Vehicle
- Surface Management System feed by high update rate data
- Robust Surface Navigation capability to pilot through use of CDTI
 - Ownership position
 - Ownership w/other targets via TIS-B/ADS-B
 - Blind Taxi

SF-21

- 6.1.1 Runway and Final Approach Occupancy Awareness (ADS-B only)
- 6.1.2 Runway and Final Approach Occupancy Awareness (ADS-B and TIS-B)
- 6.2 Airport Surface Situational Awareness
- 7.1 ASDE Enhancement with ADS-B
- 7.2 Surveillance coverage at Airports w/out ASDE
- XX Surface Management System(SMS)

Surface Capabilities

Phase 1

- ATC Tower (7.1)
 - Color display
 - Target info w/ data tag
- Surface moving map (6.1.1, 6.1.2, 6.2)
 - Both aircraft + vehicles
 - Target info provided via ADS-B / TIS-B
 - Both surface + final approach segment
- Surface management
 - "Real time" feed of data to AOC's

Phase 2

- ATC Tower
 - Alerting
- Surface moving map
 - Alerting
 - Graphical notam overlay
- Surface management
 - AOC Decision support tools
 - Collaborative decision support tools between AOC's

Phase 3

- ATC Tower
 - Taxi conformance monitoring
- Surface moving map
 - Taxi conformance monitoring
 - Blind taxi capability
- Surface management
 - Collaborative
 Decision support
 tools between AOC's
 and ATC

Runway Safety Program

- Blueprint Safety Initiatives
 - Seven major thrusts:
 - Training
 - Technology
 - Communications
 - Procedures
 - Airport Signs, Markings, and Lighting
 - Data Analysis and Metrics
 - Local Solutions

Human Factors touches all initiatives

Surface Technology Assessment

- Runway Incursion Reduction Program (RIRP)
 - Programs:
 - Existing technologies
 - » Runway Status Lights (RWSL)
 - » Loop technology (LOT) (Long Beach)
 - » Multilateration (Long Beach)
 - » Dallas/Ft. Worth RIRP Test Bed
 - Emerging technologies
 - » Surface Technology Broad Agency Announcement

		Demonstration		
Technology/Product	Contractor	Schedule	Site	
Multilateration/IR				
Sensor Fusion	Sensis and Tri-Space	July-August 2001	Memphis	
Magnetic Sensors	Honeywell	July-August 2002	Minneapolis	
GPS/RF Data Link				
Vehicle Tracking	Veridian Engineering	November 2001	Warminster, PA	
Beacon Marker Voice				
Messages	Ericcson	September 2001	WJHTC	
			Litton-Denro	
Addressable Signs	Technology Planning Inc.	November 2001	Gaithersburg, MD	

Runway Safety Program (cont'd)

- Runway incursions result from three types of surface incidents:
 - Operational Errors (OE)
 - Pilot Deviations (PD)
 - Vehicle/Pedestrian Deviations (V/PD)
- Runway incursion data

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
281	242	219	186	200	240	275	292	325	321	429

- CY 2000 breakdown:
 - Pilot Deviations 59%
 - Operational Errors 21%
 - Vehicle/Pedestrian 20%

^{*97} Total Incursions January - March 2001

Cockpit Surface Moving Map Technology Roadmap

Phase 1

- Capability
 - » Basic surface moving map

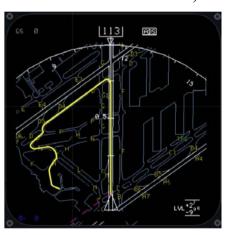
- Solves 43%
- 18% » Pilot unfamiliarity with airport
- 7% » Monitor of progressive taxi (basic)
- 7% » Establish aircraft position on surface
- 11% » Memory aid to help remember ATC instructions (basic)

Phase 2

- Capability
 - » Phase 1
 - » Target reports (requires ADS-B / TIS-B)

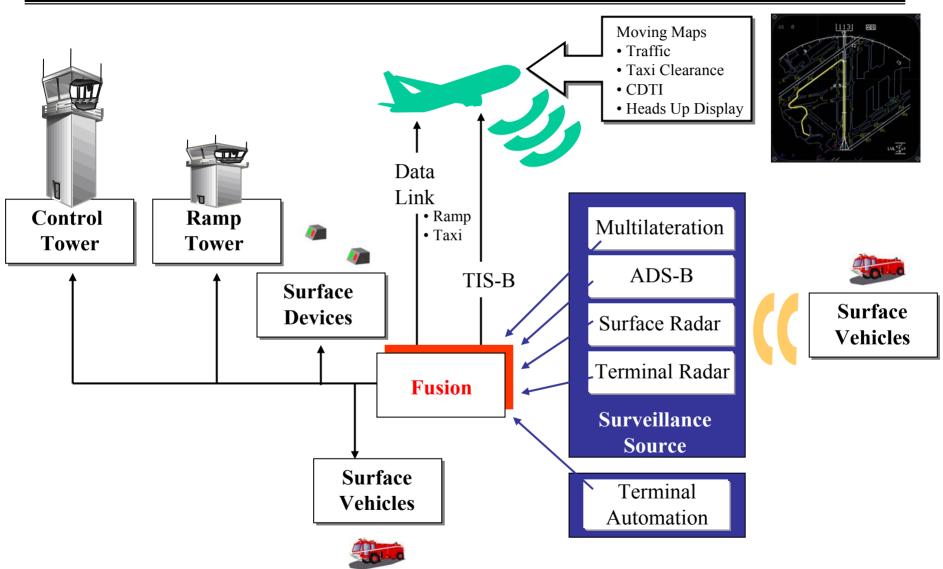
- Solves
 - » Phase 1
 - » Aid to visual scan prior to takeoff/ landing
 - » Runway occupancy (basic)

Phase 3


- Capability
 - » Phase 1 and 2
 - » Alerting (requires common alerting scheme with ATC

- Solves
 - » Phase 1 and 2
 - » Runway occupancy (advanced)
 - » Use of alerting to focus pilot attention to critical situations

Phase 4


- Capability
 - » Phase 1, 2 and 3
 - » Data link of taxi instructions (requires CDPLC in CY05)

- Solves
 - » Phase 1, 2 and 3
 - » Memory aid to help pilot remember ATC instruction (advanced)
 - » Pilot communications (complexity, confirmation of ATC taxi instructions)

Integrated Architecture "Large/Medium Airport"

